
4th International Conference on Sensitivity Analysis of Model Output (SAMO-04) 
March 8-11, 2004, Santa Fe, New Mexico 

 

 
Approved for unlimited, public release on June 30, 2003                                          LA-UR-03-4283, Unclassified 

1

THE GOOD, THE BAD, AND THE UGLY OF PREDICTIVE SCIENCE 
 

François M. Hemez1 Yakov Ben-Haim2 

Engineering Sciences and Applications Faculty of Mechanical Engineering 
Los Alamos National Laboratory Technion — Israel Institute of Technology 

Los Alamos, New Mexico 87545, U.S.A. Haifa 32000 Israel 

Extended Abstract 

In computational physics and engineering, numerical models are developed to predict the 
behavior of a system whose response cannot be measured experimentally. A key aspect of 
science-based predictive modeling is the assessment of prediction credibility. Credibility, which 
is usually demonstrated through the activities of model Verification and Validation (V&V), 
quantifies the extent to which simulation results can be analyzed with confidence to represent the 
phenomenon of interest with an accuracy consistent with the intended use of the model [1]. 

The paper develops the idea that assessing the credibility of a mathematical or numerical 
model must combine three components: 1) Improving the fidelity to test data; 2) Studying the 
robustness of prediction-based decisions to variability, uncertainty, and lack-of-knowledge; and 
3) Establishing the expected prediction accuracy of the models in situations where test 
measurements are not available. A Theorem demonstrates the irrevocable trade-off between “the 
Good, the Bad, and the Ugly,” or robustness-to-uncertainty, fidelity-to-data, and confidence-in-
prediction. 

1. Fidelity, Robustness, and Confidence 
Even though the conventional activities of model V&V are generally restricted to improving 

the fidelity-to-data through the correlation of test and simulation results and the calibration of 
model parameters [2, 3], the other two components are equally important. The main reason is 
that optimal models—in the sense of models that minimize the prediction errors with respect to 
the available test data—possess exactly zero robustness to uncertainty and lack-of-knowledge 
[4]. This means that small variations in the setting of model parameters, or small errors in the 
knowledge of the functional form of the models, can lead to an actual fidelity that is significantly 
poorer than the one demonstrated through calibration. 

Clearly, fidelity-to-data matters because no analyst will trust a numerical simulation that 
does not reproduce the measurements of past experiments or historical databases. Robustness-to-
uncertainty is equally critical to minimize the vulnerability of decisions to uncertainty and lack-
of-knowledge. It may be argued, however, that the most important aspect of credibility is the 
assessment of confidence-in-prediction, which is generally not addressed in the literature. 

Assessing the confidence-in-prediction here refers to an assessment of prediction error away 
from settings where physical experiments have been performed, which must include a rigorous 
quantification of the sources of variability, uncertainty, and lack-of-knowledge, and their 
sensitivity effects on model prediction. The concepts of fidelity-to-data, robustness-to-
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uncertainty, and prediction confidence are illustrated in Figure 1. The numerical model is 
represented conceptually as a “black-box” input-output relationship between the inputs (p1;p2) 
and output prediction y:3 

)p;M(py 21=  (1)
A domain such as [p1

(min);p1
(max)] x [p2

(min);p2
(max)] represents the design space over which 

predictions must be obtained. Such requirement implies that the prediction accuracy must be 
established for all settings (p1;p2) in the design domain [p1

(min);p1
(max)] x [p2

(min);p2
(max)]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Concepts of fidelity-to-data, robustness, and prediction accuracy. 

Fidelity-to-data represents the “distance” e—assessed with the appropriate metrics, possibly 
statistical tests if probabilistic information is involved—between physical measurements yTest and 
simulation predictions y at a given setting (p1;p2): 

yye Test −=  (2)

Fidelity-to-data is pictured in Figure 1 as the vertical distance between a measurement yTest and a 
prediction y for a physical experiment and a numerical simulation performed at the same setting 
(p1;p2). 

Robustness-to-uncertainty here refers to the range of settings (p1;p2) that provide no more 
than a given level of prediction error eMax. The concept of robustness-to-uncertainty a* is 
formulated mathematically as: 

                                                           
3 The input parameters (p1;p2) represent settings such as, for example, the angle of attack and flow velocity of an 
aero-elastic simulation that predicts a coefficient of lift y=CL. Another example would be the simulation of the 
response of a building to an Earthquake excitation, where the input parameters would represent the amplitude and 
frequency contents of the excitation and the output prediction would be structural stress levels. 
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where eMax is a prediction error threshold not to be exceeded, Ua is a subset of the design domain 
[p1

(min);p1
(max)] x [p2

(min);p2
(max)] within which the parameters (p1;p2) can vary, and a represents 

the size of the domain Ua. The family of domains Ua for a>0 can be arbitrarily defined, for 
example, as hyper-intervals centered about a nominal setting (p1

(0);p2
(0)). The only constraint to 

satisfy is that increasing values of the robustness parameter a must define nested domains Ua. It 
is emphasized that such definition can accommodate many models and representations of 
uncertainty and lack-of-knowledge.4 The significance of the definition (3) is that all predictions 
made for settings (p1;p2) included in Ua* are guaranteed not to exceed the error threshold eMax. 
The concept of robustness-to-uncertainty a* is illustrated in Figure 1 by showing a domain Ua 
for which any prediction will not exceed eMax. 

Finally, the symbol λY in Figure 1 refers to the range of predictions made by a family of 
potentially different models. The importance of λY stems from the fact that, to have confidence in 
predictions, there should be as much consistency as possible between the predictions of equally 
credible “models” or sources of information.5 Confidence in predictions is generally increased 
when different sources of evidence all reach the same conclusion. The concept of confidence-in-
prediction is illustrated in Figure 1 by showing a range λY of predictions obtained when different 
models are exercised to make predictions at a setting (p1;p2) where no test data are available. In 
the remainder, the relationship between robustness-to-uncertainty a*, fidelity-to-data e, and 
confidence-in-prediction or, equivalently, range-of-predictions λY is discussed. 

2. Total Uncertainty 
Because the ultimate goal of model validation is to bound the predictive confidence by 

estimating a range of predictions λY, the origin of evidence used in such assessment must be 
briefly discussed. In any realistic application, sources of evidence include expert judgment, back-
of-the-envelope calculations, experimental measurements, or predictions obtained from 
phenomenological models or high-fidelity simulations. Together they define a knowledge space 
whose size is related to the consistency between the different sources of evidence. Figure 2 
illustrates the concept of knowledge space where, for example, observations are obtained through 
two physical experiments (labeled “Test 1” and “Test 2”), opinions are collected from two 
experts (labeled “Expert A” and “Expert B”), and predictions are made by two models that 
incorporate different levels of fidelity to the physics. 

The “size” of the knowledge domain illustrated in Figure 2 is an important component of 
predictive science because it defines the total uncertainty. Total uncertainty includes the effect of 
variability, uncertainty, and lack-of-knowledge of the physical phenomenon about which one is 
trying to make predictions. If all sources of evidence are consistent with each other, the total 
                                                           
4 A first example is a probabilistic model of variability where the values of coefficients in the covariance matrix are 
controlled by the parameter a. A second example is a possibility structure π defined to represent a lack-of-
knowledge, where the size of intervals is proportional to the parameter a. A third example is a family of fuzzy 
membership functions defined to represent expert judgment and linguistic ambiguity, where the membership 
functions are parameterized by a. 
 
5 As discussed in the next paragraph, “models” is here defined in a loose sense. Models can refer to physical models, 
numerical models, and other sources of information such as expert opinion and indirect measurements obtained 
when the data collected during physical experiments are interpreted through models. 
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uncertainty is expected to be small. Conversely, a large value of the total uncertainty metric 
tends to indicate a significant lack-of-knowledge. Although a formal relationship has not 
currently been developed, there is an obvious connection between the concept of total 
uncertainty and the notion of confidence-in-prediction or, equivalently, with the range-of-
predictions λY. Metrics are currently being studied to appropriately measure the total uncertainty 
represented by different sources of evidence [5]. Even though it is usually restricted to 
parametric variability, model output sensitivity should also be concerned with studying the 
effects of epistemic uncertainty and lack-of-knowledge. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Concept of knowledge space. 

3. Theoretical Results 
The paper explores the trade-offs between fidelity-to-data e, robustness-to-uncertainty α, and 

range-of-predictions λY. We prove a Theorem that can be summarized by: 

0
α
λY ≥
∂

∂  (4)

which means that a revision of the model, with the purpose of enhancing robustness to modeling 
error, also increases the range of predictions. In other words, robustness and prediction 
confidence are antagonistic attributes of any model. The proof relies on the information-gap 
description of uncertainty and no restrictive assumption is made regarding the models, sources or 
types of uncertainty, and their mathematical representations [6]. 

The Theorem can be further extended to prove the following three inequalities: 

0
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(5)

which express the three trade-offs between fidelity, robustness, and confidence-in-prediction: 
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• Robustness decreases as fidelity improves. The robustness α gets larger if the prediction 
error e gets larger. Numerical simulations made to better reproduce the test data become 
more vulnerable to errors in modeling assumptions, errors in the functional form of the 
model, and uncertainty and variability in the model parameters. 

• The range of predictions increases as robustness improves. The range of predictions λY gets 
larger if the robustness α gets larger. Numerical simulations that are more immune to 
uncertainty and modeling errors provide a wider, hence less consistent, range of 
predictions. 

• The range of predictions increases as fidelity improves. The range of predictions λY gets 
larger if the prediction error e gets larger. Numerical simulations made to better reproduce 
the available test data provide a smaller range of predictions, hence, enhancing the 
consistency between the predicted responses. Although intuitive, this result is not 
necessarily a good thing when the models are employed to analyze configurations of the 
system that are very different from those tested. 

These trade-offs imply that it is not possible to have, simultaneously, high fidelity, large 
robustness, and large confidence-in-prediction. High fidelity (small e) implies that the model is 
true to the measurements, which adds warrant to the model. Large robustness (large α) 
strengthens belief in the validity of the model or family of models. Consistent predictions (small 
λY) imply that the models that are equivalent in terms of fidelity, also agree in their predictions of 
the system behavior. 

The conflict between robustness, fidelity, and confidence-in-prediction is reminiscent of 
Hume’s critique of empirical induction. Our analysis shows that past measurements, 
accompanied by incomplete understanding of the measured process, cannot unequivocally 
establish true predictions of the behavior of the system. 

4. Application 
The theoretical results are illustrated with an engineering application whose purpose is to 

predict the peak acceleration transmitted through a layer of non-linear hyper-foam material 
subjected to a transient impact [7]. Evidence is obtained by analyzing low-fidelity models, 
analyzing high-fidelity finite element models, eliciting expert opinion, and collecting physical 
measurements. These sources of information are illustrated in Figure 3 that shows the ranges of 
peak acceleration values expected to result from the propagation of the shock wave. 

The decision that must be supported by this analysis is to assess whether or not the peak 
acceleration value will exceed a critical level. Uncertainty about the information shown in Figure 
3 is represented using a possibility distribution because it is epistemic in nature. A non-
probabilistic sensitivity analysis is performed next to assess how the lack-of-knowledge about 
the physics of the shock transmission affects the safety margin, defined as the difference between 
the peak acceleration and a level not to be exceeded. The sensitivity is defined as the slope of the 
robustness-to-uncertainty, and it expresses the vulnerability of the safety margin to total 
uncertainty. Results are compared to a probabilistic-based reliability analysis to illustrate the 
consequence of not accounting for the lack-of-knowledge. 
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Figure 3. Study of the propagation of a shock wave through a hyper-foam material. 
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